歡迎

本站利用 MathJax 顯示數學式子,請安裝 STIX Font 以確保數學式子顯示無誤,安裝方法請參閱 MathJax Font Help

2007年1月29日 星期一

The definition of a metric space

A metric on a set $X$ is a real-valued function $d$ on $X \times X$ that has the following properties:

  1. $d(x, y) \geq 0$, $x, y \in X$,
  2. $d(x, y) = 0$ if and only if $x = y$,
  3. $d (x, y) = d(y, x)$, $x, y in X$,
  4. $d (x, z) \leq d (x, y) + d (y, z)$, $x, y, z \in X$. (triangle inequality)

A metric space $(X, d)$ is a set $X$ equipped with a metric $d$ on $X$.

沒有留言: